

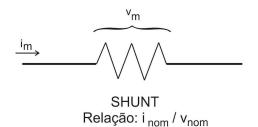
Para outros modelos equivalentes, acessar: https://www.secon.com.br/produtos/transdutores.corrente.DC

Os transdutores para shunt possuem como função básica medir corrente DC, com ou sem mudança de polaridade (±DC ou DC respectivamente), através de um shunt (derivador resistivo). Dessa forma, medem o sinal proveniente de um shunt e geram simultaneamente um sinal proporcional em sua saída. Fornecidos para várias relações de shunt, criam também um isolamento galvânico (óptico) entre o shunt e o sinal de saída. Podem ser fornecidos modelos com saída somente analógica, somente para rede e analógica mais rede. Com exceção dos modelos que possuem saída em rede RS485 MODBUS, seus circuitos são totalmente analógicos.

Características Técnicas:

- Transdutor analógico para medição de corrente através de shunt (derivador resistivo).
- Tipo de medida: DC instantânea (DC).
- Saída padronizada e proporcional a faixa de medida.
- Erro total máximo (23°C): \leq 0,5% de $i_{nom.}$
 - Obs: O erro pode ser tanto para cima quanto para baixo ($\pm 0.5\%$).
- Drift térmico: 0,01% / °C
- Tempo de resposta da saída analógica: 1ms
- Total isolamento galvânico (óptico) entre entrada / saída / alimentação. Ensaio de isolamento entre entradas de tensão e outros: 1,5kV_{ac}/1min (60Hz); e 2kV (1,2/50µs).
- Modelos com saída RS485 MODBUS:
 - $v_{máx}$ por um período $\leq 5s$: $i_{nom} + 10\%$.
- Modelos sem saída RS485 MODBUS:
 - $v_{máx}$ por um período ≤ 1 min: $v_{nom} + 50\%$.
 - v_{máx} por um período ≤10s: 2 x v_{nom}.
- Modelos com medidas sem mudança de polaridade:
 - Tensão reversa máxima (- $i_{máx}$) = $i_{máx}$
- Faixa de temperatura: -10°C a 70°C
- Grau de proteção: IP40;
 - IP20 (Modelos com comunicação em rede RS485-MODBUS).
- Encapsulamento em ABS padrão DIN de fixação em trilhos (35mm).
- Peso: 300 g

Nomenclatura:


 i_{nom} : Corrente nominal i_{m} : Tensão medida v_{nom} : Tensão nominal v_{m} : Tensão medida

v_{máx}: Tensão máxima suportada na entrada da medida (sem causar danos ao transdutor)

Shunt (derivador resistivo):

Os shunts ou derivadores resistivos são utilizados para a medição de correntes de amplitudes geralmente elevadas. São na verdade resistores com baixo coeficiente térmico que ao serem percorridos por uma corrente elétrica (i_m) geram sobre si uma tensão elétrica (v_m) .

Versão: 06/23

www.secon.com.br comercial@secon.com.br Fone: 51 3223-0608

Página 1 de 9

Para outros modelos equivalentes, acessar: https://www.secon.com.br/produtos/transdutores.corrente.DC

Conforme a figura acima, i_m é a corrente a ser medida e v_m é a tensão resultante sobre o shunt. A amplitude da tensão (v_m) é definida pela relação do shunt e, dessa forma, um modelo, que possui, por exemplo, uma relação 2000A/150mV, produz sobre si uma tensão (v_{nom}) de 150mV quando percorrido por uma corrente (i_{nom}) 2000A.

Como v_m é o sinal a ser medido pelo transdutor sobre o shunt, o mesmo é na verdade um transdutor de tensão com v_{nom} igual ao do shunt.

Faixas de Medida			
Faixa de Medida	Tensão Nominal V _{nom} (mV _{dc)}	Impedância de Entrada	
0 - 50mV _{dc}	50	40kΩ	
0 - 60mV _{dc}	60	40kΩ	
0 – 75mV _{dc}	75	40kΩ	
0 – 100mV _{dc}	100	40kΩ	
0 - 120mV _{dc}	120	40kΩ	
$0 - 135 \text{mV}_{dc}$	135	50kΩ	
0 - 150mV _{dc}	150	50kΩ	
0 – 200mV _{dc}	200	50kΩ	
$\pm 50 \text{mV}_{dc}$	50	40kΩ	
±60mV _{dc}	60	40kΩ	
$\pm 75 \text{mV}_{dc}$	75	40kΩ	
±100mV _{dc}	100	40kΩ	
±120mV _{dc}	120	40kΩ	
±135mV _{dc}	135	50kΩ	
±150mV _{dc}	150	50kΩ	
±200mV _{dc}	200	50kΩ	

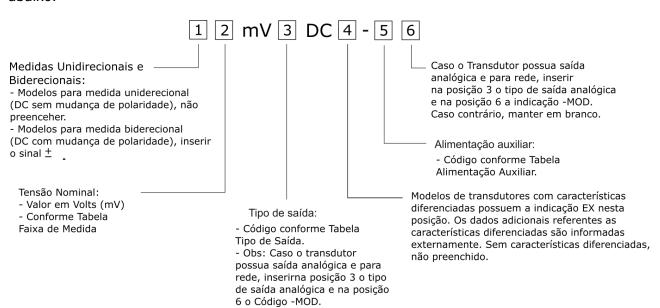
Tipos de Saída				
Saída	Código	Função de Transferência Modelo Uniderecional	Função de Transferência Modelo Bidirecional	Observação
(0 - 4)V	04V	Saída (V) = $4.i_p/i_{nom}$	Saída (V) = 2 + $2.i_p/i_{nom}$	-
(0 - 5)V	05V	Saída (V) = $5.i_p/i_{nom}$	Saída (V) = $2.5 + 2.5.i_p/i_{nom}$	-
(1 - 4)V	14V	Saída (V) = $1 + 3.i_p/i_{nom}$	Saída (V) = $2.5 + 1.5.i_p/i_{nom}$	-
(0 - 10)V	010V	Saída (V) = $10.i_p/i_{nom}$	Saída (V) = 5 + $5.i_{p}/i_{nom}$	-
(0 - 1)mA	01A	Saída (V) = i_p/i_{nom}	Saída (V) = $0.5 + 0.5.i_p/i_{nom}$	Conexão a 4 fios
(0 - 20)mA	020A	Saída (mA) = $20.i_p/i_{nom}$	Saída (mA) = $10 + 10.i_p/i_{nom}$	Conexão a 4 fios
(4 - 20)mA	420A	Saída (mA) = $4+16.i_p/i_{nom}$	Saída (mA) = $12 + 8.i_p/i_{nom}$	Conexão a 4 fios
(4 - 0)V	40V	Saída (V) = $4-4.i_p/i_{nom}$	Saída (V) = 2 - $2.i_p/i_{nom}$	-
(5 – 0)V	50V	Saída (V) = $5-5.i_p/i_{nom}$	Saída (V) = $2.5 - 2.5.i_p/i_{nom}$	-
(10 - 0)V	100V	Saída (V) = $10-10.i_p/i_{nom}$	Saída (V) = 5 - $5.i_p/i_{nom}$	-
(1 - 0)mA	10A	Saída (V) = $1-i_p/i_{pom}$	Saída (V) = $0.5 - 0.5.i_p/i_{nom}$	Conexão a 4 fios
(20 – 0)mA	200A	Saída (mA) = $20-20.i_{p}/i_{nom}$	Saída (mA) = $10 - 10.i_p/i_{nom}$	Conexão a 4 fios
(20 - 4)mA	204A	Saída (mA) = $20-16.i_p/i_{nom}$	Saída (mA) = 12 - $8.i_p/i_{nom}$	Conexão a 4 fios
±4V	±4V	Saída (V) = $-4 + 8.i_p/i_{nom}$	Saída (V) = $4.i_p/i_{nom}$	-
±5V	±5V	Saída (V) = -5 + $10.i_p/i_{nom}$	Saída (V) = $5.i_p/i_{nom}$	-
±10V	±10V	Saída (V) = -10 + $20.i_p/i_{nom}$	Saída (V) = $10.i_p/i_{nom}$	=
±20mA	±20A	Saída (mA) = $-20 + 40.i_{p}/i_{pom}$	Saída (mA) = $20.i_p/i_{nom}$	=
PWM	PWM	Sistema PWM (7kHz; Amplitude da tensão: 5V)	Sistema PWM (7kHz; Amplitude da tensão: 5V)	-
Rede	MOD	RS485 – Protocolo MODBUS-RTU		-
Outras	Sob-Co	nsulta		•

- Modelos com saída em tensão:
 - Corrente máxima suportada nas saídas: 2mA.
 - Tensão máxima possível na saída: < 13Vdc (p/ correntes maiores que i_{nom})
- Modelos com saída em corrente:
 - Impedância máxima a ser colocada na saída (R_c+R_L): 500 Ω .
 - Corrente máxima possível na saída: $<\frac{15}{100+R_c+R_L}$ (p/ correntes maiores que i_{nom})

www.secon.com.br comercial@secon.com.br Fone: 51 3223-0608 Versão: 06/23 Página **2** de **9**

Fone: 51 3223-0608

Página 3 de 9


Para outros modelos equivalentes, acessar: https://www.secon.com.br/produtos/transdutores.corrente.DC

Alimentação Auxiliar			
		Potência Máxima de Consumo	
Tipo de Alimentação Auxiliar	Código	Tipo de saída Condição da alimentação	Consumo
(10 - 15)Vdc**	E12VDC	Somente analógica Condição da alimentação 10Vdc	<3,3W
		Somente rede RS485 MODBUS Condição da alimentação 10Vdc	<3,5W
		Analógica + rede RS485 MODBUS Condição da alimentação 10Vdc	<3,9W
(20 – 70)Vdc* (23 – 60)Vac 45500Hz	UNIV3	Somente analógica Condição da alimentação 20Vdc	<2,4W
		Somente rede RS485 MODBUS Condição da alimentação 20Vdc	<2,6W
		Analógica + rede RS485 MODBUS Condição da alimentação 20Vdc	<3W
(80 - 350)Vdc* (70 - 245)Vac 45500Hz	UNIV	Somente analógica Condição da alimentação 70Vac	<2,4W
		Somente rede RS485 MODBUS Condição da alimentação 70Vac	<2,6W
		Analógica + rede RS485 MODBUS Condição da alimentação 70Vac	<3W
220Vac (±10%) 60Hz	220VAC	Somente analógica	<3,4W
		Somente rede RS485 MODBUS	<3,6W
		Analógica + rede RS485 MODBUS	<3,9W
Outras: Sob consulta.			

^{*} Os modelos com alimentação do tipo UNIV3 e UNIV, poderão trabalhar com a alimentação auxiliar invertida.

Código do modelo do produto:

Para o código final do produto, inserir as informações nas posições de 1 a 6 conforme diagrama abaixo.

Versão: 06/23

^{**} Modelos com alimentação E12VDC não funcionarão com a alimentação invertida e, em caso de inversão, não haverá danos ao transdutor.

Fone: 51 3223-0608

Página 4 de 9

Para outros modelos equivalentes, acessar: https://www.secon.com.br/produtos/transdutores.corrente.DC

Utilizando o diagrama anterior, pode-se determinar o código dos produtos a partir da etiqueta fixada sobre o transdutor:

- 1 2 Valor nominal (mV) da tensão de entrada.
- 3 6 Tipo(s) de saída(s).
- 5 Alimentação auxiliar. Caso esteja indicado (80-350)Vdc/(70-245)Vac, utilizar o código UNIV.

Versão: 06/23

Para o exemplo da etiqueta acima, teremos o modelo: 60mV420ADC-UNIV-MOD

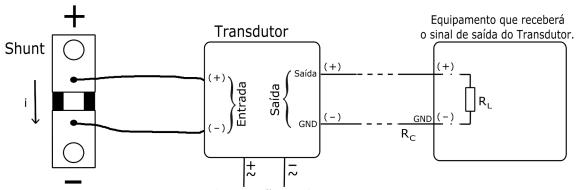
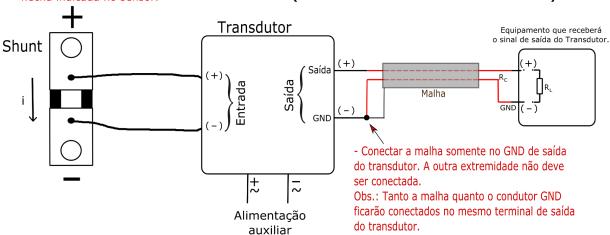

Para outros modelos equivalentes, acessar: https://www.secon.com.br/produtos/transdutores.corrente.DC

Diagrama de Conexões:

- Não injetar tensão na saída do transdutor.
- Modelos com saída em corrente: Conexão a 4 fios.
- Os modelos com alimentação do tipo UNIV3 e UNIV, poderão trabalhar com a alimentação auxiliar invertida.
- Modelos com alimentação E12VDC não funcionarão com a alimentação invertida e, em caso de inversão, não haverá danos ao transdutor.
- A utilização de cabo blindado para envio de sinal de saída do transdutor não é necessária na maioria das aplicações.

- Respeitar o sentido convencional da corrente: Observar o sentido da flecha indicada no sensor.

Conexão saída amalógica sem cabo blindado (Conexão saída rede: Ver em Saída e Rede)



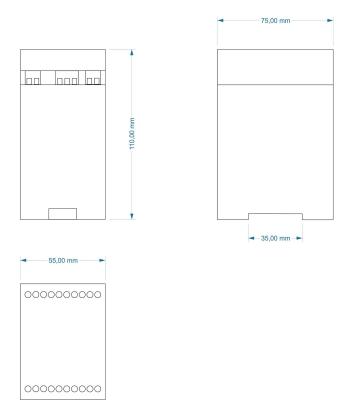
Alimentação auxiliar

- Modelos com alimentação DC, desconsiderar os sinais \sim/\sim .
- Modelos com alimentação AC, desconsiderar os sinais +/-.

Respeitar o sentido convencional da corrente: Observar o sentido da flecha indicada no sensor.

Conexão saída amalógica com cabo blindado (Conexão saída rede: Ver em Saída e Rede)

- Modelos com alimentação DC, desconsiderar os sinais \sim/\sim .
- Modelos com alimentação AC, desconsiderar os sinais +/-.


www.secon.com.br comercial@secon.com.br Fone: 51 3223-0608 Versão: 06/23 Página **5** de **9**

Para outros modelos equivalentes, acessar: https://www.secon.com.br/produtos/transdutores.corrente.DC

Dimensões Físicas:

Fixação por trilho DIN 35mm.

Saída em rede RS485 (MODBUS-RTU).

Além da saída analógica, os transdutores também podem ser fornecidos com uma saída em rede RS485 protocolo MODBUS-RTU (atuando como escravo). O endereço de comunicação MODBUS é determinado através de chaves seletoras (chaves de 1 a 7; Ver figura abaixo). A quantidade máxima de endereços distintos possíveis é de 127. Para mais detalhes, consulte nossa equipe técnica.

Versão: 06/23

www.secon.com.br comercial@secon.com.br Fone: 51 3223-0608

Página 6 de 9

Para outros modelos equivalentes, acessar: https://www.secon.com.br/produtos/transdutores.corrente.DC

Norma TIA/EIA-485:

A norma TIA/EIA-485, conhecida popularmente como RS485, descreve uma interface de comunicação operando em linhas diferenciais capaz de se comunicar com 32 "unidades de carga". Normalmente, um dispositivo transmissor/receptor corresponde a uma "unidade de carga", o que faz com que seja possível comunicar com até 32 dispositivos. Entretanto, existem dispositivos que consomem frações de unidade de carga, o que aumenta o máximo número de dispositivos a serem interligados. O meio físico mais utilizado é um par trançado. Através deste único par de fios, cada dispositivo transmite e recebe dados. Cada dispositivo aciona o seu transmissor apenas no instante que necessita transmitir, mantendo-o desligado no resto do tempo de modo a permitir que outros dispositivos transmitam dados. Em um determinado instante de tempo, somente um dispositivo pode transmitir, o que caracteriza esta rede como half-duplex. Uma rede RS-485 pode também utilizar dois pares trançados, operando no modo full-duplex, totalmente compatível com o RS-422.

Os equipamentos Secon correspondem a 1 "unidade de carga" ($12k\Omega$) e estão configurados para trabalhar com redes half-duplex.

Detalhes da Chave Seletora.

- Chaves de 1 a 7: Endereço de comunicação MODBUS; Chave 1 é o BIT menos significativo do endereço.
- Chave 8: Velocidade de comunicação serial RS485; Posição 0 = 9600bps; Posição 1 (ON) = 19200bps.

Funções Válidas

03 (Read Holding Registers) 04 (Read Input Registers)

Paridade (Configurado em fábrica)

- 8N1 (configuração padrão): 8 bits de dados, Sem paridade, 1 bit de parada.
- 8E1: 8 bits de dados, paridade par, 1 bit de parada.
- 801: 8 bits de dados, paridade ímpar, 1 bit de parada.
- 8N2: 8 bits de dados, sem paridade, 2 bits de parada.

Stop BIT

1

Endereço da Memória de Leitura.

Medida Unidirecional (Sem mudança de polaridade)			
ENDEREÇO MEMÓRIA	TIPO	DESCRIÇÃO	INDICAÇÃO EM DECIMAL
0	INT16	CORRENTE DC MEDIDA	0 a 1000

www.secon.com.br Fon comercial@secon.com.br Versão: 06/23

Fone: 51 3223-0608 Página **7** de **9**

Para outros modelos equivalentes, acessar: https://www.secon.com.br/produtos/transdutores.corrente.DC

Indicação da medida: A saída MODBUS gera uma indicação (número) de 0 a 1000 em decimal. Sendo que 0 representa 0V (ou 0A) e 1000 representa o final da faixa do transdutor (ou corrente nominal do shunt).

Exemplo: Para um transdutor com faixa de medida de 0..100mVdc (utilizando um shunt 500A/100mV), teremos na saída uma indicação de 0 a 1000, sendo 0 equivalente a 0V (ou 0A) e 1000 equivalente a 100mVdc (ou 500Adc). Caso a saída MODBUS, para este caso, esteja indicando o número 682, por regra de três, sabe-se que será proporcional a corrente de 68,2mVdc (ou 341Adc).

Medida Bidirecional (Com mudança de polaridade)			
ENDEREÇO MEMÓRIA	TIPO	DESCRIÇÃO	INDICAÇÃO EM DECIMAL
0	INT16	CORRENTE DC MEDIDA	-1000 a 1000

Indicação da medida: A saída MODBUS gera uma indicação (número) de -1000 a 0 a 1000 em decimal. Sendo que -1000 representa o início da faixa (ou (-) corrente nominal do shunt), 0 representa 0V (ou 0A) e 1000 representa o final da faixa do transdutor (ou (+) corrente nominal do shunt).

Exemplo: Para um transdutor com faixa de medida de -100..0..100mVdc (utilizando um shunt 500A/100mV), teremos na saída uma indicação de -1000 a 1000, sendo que -1000 equivale -100mVdc (ou -500Adc), 0 equivalente a 0V (ou 0A) e 1000 equivalente a 100mVdc (ou +500Adc). Caso a saída MODBUS, para este caso, esteja indicando o número -682, por regra de três, sabe-se que será proporcional a corrente de -68,2Adc (ou -341Adc).

Tempo de resposta do Modbus (Da solicitação da pergunta até a obtenção da resposta)

19200bps: Tempo ≤100ms; 9600bps: Tempo ≤140ms

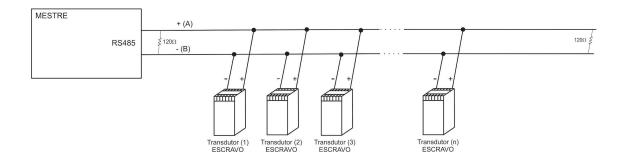
Rede Física

Nas redes RS485, o meio físico mais utilizado é um par de condutores trançados por onde os dispositivos transmitem e recebem os dados. O comprimento máximo dessas redes não deve exceder os 1200m e caso a mesma tenha acima de 100m é importante a colocação de resistores de terminação de 120Ω (conforme figura abaixo) para que não seja necessário a diminuição de velocidade de comunicação em benefício de uma manutenção de confiabilidade da rede.

Deve ser evitada a existência de condutores não utilizados em redes físicas pois os mesmos poderão auto-ressonar e acoplar ruídos. Caso a alternativa não seja possível, utilizar resistores de terminação em ambas as extremidades (ver figura).

Versão: 06/23

www.secon.com.br comercial@secon.com.br Fone: 51 3223-0608 Página **8** de **9**


Versão: 06/23

Fone: 51 3223-0608

Página 9 de 9

Para outros modelos equivalentes, acessar: https://www.secon.com.br/produtos/transdutores.corrente.DC

