

Transdutores para Medidas de Tensão DC sem Mudança de Polaridade

Os transdutores da LINHA VDC se caracterizam por realizarem, com total isolamento galvânico (óptico), medidas de sinais em tensão DC sem mudança de polaridade. Montados em um encapsulamento padrão DIN para fixação em fundo de painel (trilhos – 35mm), podem ser fornecidos com saída analógica do tipo (0-5)V, (0-10)V, (0-20)mA, (4-20)mA, (5-0)V, (10-0)V, (20-0)mA, $(20-4)mA <math>\pm 5V$, $\pm 10V$ ou $\pm 20mA$ (outros sob-consulta) e para comunicação em rede RS485 protocolo MODBUS-RTU. Podem ser fornecidos modelos com saída somente analógica, somente para rede e analógica mais rede.

Características Técnicas:

- Transdutor analógico de tensão.
- Tipo de medida: DC instantânea (DC).
- Saída padronizada e proporcional a faixa de medida.
- Erro máximo (70°C): ±1% de V_{nom.}
- Total isolamento galvânico (óptico) entre entrada / saída / alimentação. Ensaio de isolamento entre entradas de tensão e outros: 1,5kV_{ac}/1min (60Hz); e 2kV (1,2/50μs).
- V_{máx} por um período ≤1min: V_{nom} + 50%.
- V_{máx} por um período ≤10s: 2 x V_{nom}.
- Faixa de temperatura: -10°C à 70°C
- Grau de proteção: IP40; IP20 (Modelos com comunicação em rede RS485-MODBUS)
- Peso: 300 g

Nomenclatura:

V_{nom}: Tensão Nominal

 $V_{\text{máx}}$: Tensão máxima suportada na entrada da medida (sem causar danos ao transdutor)

V_p: Tensão medida

Tipos de Saída					
Saída	Função de Transferência	Código			
(0 - 5)V	Saída (V) = $5.v_p/v_{nom}$	05V			
(0 - 10)V	Saída (V) = $10.v_p/v_{nom}$	010V			
(0 - 20)mA	Saída (mA) = $20.v_p/v_{nom}$	020A			
(4 - 20)mA	Saída (mA) = $4+16.v_p/v_{nom}$	420A			
(5 - 0)V	Saída (V) = $5-5.v_p/v_{nom}$	50V			
(10 - 0)V	Saída (V) = $10-10.v_p/v_{nom}$	100V			
(20 - 0)mA	Saída (mA) = $20-20.v_p/v_{nom}$	200A			
(20 - 4)mA	Saída (mA) = $20-16.v_p/v_{nom}$	204A			
±5V	Saída (V) = -5 + $10.v_p/v_{nom}$	±5V			
±10V	Saída (V) = -10 + 20. v_p/v_{nom}	±10V			
±20mA	Saída (mA) = $-20 + 40.v_p/v_{nom}$	±20A			
Rede	RS485 - Protocolo MODBUS-RTU	MOD			
Outras	Sob-Consulta				

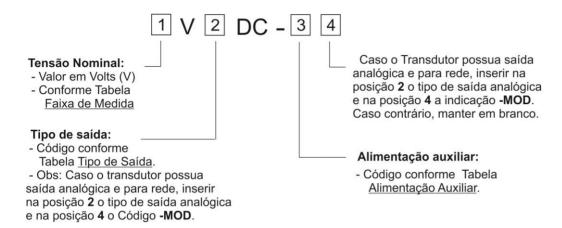
- Modelos com saída em tensão:
 - Corrente máxima suportada nas saídas: 2mA.
 - Tensão máxima na saída: < 13Vdc (p/ tensões maiores que v_{nom})
- Modelos com saída em corrente:
 - Impedância máxima a ser colocada na saída: 500Ω.
 - Corrente máxima na saída: < 24mAdc (p/ tensões maiores que v_{nom})

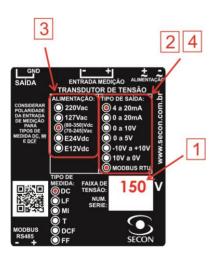
Transdutores para Medidas de Tensão DC sem Mudança de Polaridade

Alimentação Auxiliar					
Tipo de Alimentação Auxiliar	Característica	Corrente Máxima de Consumo	Código		
(10 - 15)Vdc	Total Isolamento	650mA	E12VDC		
(17 - 30)Vdc	Total Isolamento	150mA	E24VDC		
(35 – 70)Vdc	Total Isolamento	100mA	UNIV2		
(80 - 350)Vdc (70 - 245)Vac 50/60Hz	Total Isolamento	70mA	UNIV		
127Vac (±10%) 60Hz	Total Isolamento	50mA	127VAC		
220Vac (±10%) 60Hz	Total Isolamento	25mA	220VAC		

	Faixas (de Medida	
Faixa de Medida	Tensão Nominal V _{nom} (V _{dc)}	Tempo de Resposta	Impedância de Entrada
(0 – 60)mV _{dc}	0,06	100ms	40kΩ
(0 - 100)mV _{dc}	0,1	100ms	40kΩ
(0 – 150)mV _{dc}	0,15	100ms	50kΩ
(0 – 200)mV _{dc}	0,2	100ms	50kΩ
(0 – 300)mV _{dc}	0,3	100ms	50kΩ
(0 – 500)mV _{dc}	0,5	10ms	50kΩ
(0 - 750)mV _{dc}	0,75	10ms	50kΩ
(0 - 1)V _{dc}	1	10ms	50kΩ
(0 - 2)V _{dc}	2	10ms	50kΩ
(0 - 3)V _{dc}	3	10ms	50kΩ
(0 - 5)V _{dc}	5	10ms	50kΩ
(0 - 7)V _{dc}	7	10ms	50kΩ
(0 - 10)V _{dc}	10	1ms	50kΩ
(0 - 15)V _{dc}	15	1ms	50kΩ
(0 - 20)V _{dc}	20	1ms	50kΩ
(0 - 25)V _{dc}	25	1ms	50kΩ
(0 - 30)V _{dc}	30	1ms	1ΜΩ
(0 - 35)V _{dc}	35	1ms	1ΜΩ
(0 – 50)V _{dc}	50	1ms	1ΜΩ
(0 - 60)V _{dc}	60	1ms	1ΜΩ
(0 - 75)V _{dc}	75	1ms	1ΜΩ
(0 - 100)V _{dc}	100	1ms	2ΜΩ
(0 - 125)V _{dc}	125	1ms	2ΜΩ
(0 - 130)V _{dc}	130	1ms	2ΜΩ
(0 - 150)V _{dc}	150	1ms	2ΜΩ
(0 - 200)V _{dc}	200	1ms	2ΜΩ
(0 - 250)V _{dc}	250	1ms	2ΜΩ
(0 - 300)V _{dc}	300	1ms	5ΜΩ
(0 - 350)V _{dc}	350	1ms	5ΜΩ
(0 - 400)V _{dc}	400	1ms	5ΜΩ
(0 - 450)V _{dc}	450	1ms	5ΜΩ
(0 - 500)V _{dc}	500	1ms	5ΜΩ
(0 - 550)V _{dc}	550	1ms	5ΜΩ
(0 - 600)V _{dc}	600	1ms	5ΜΩ
(0 - 650)V _{dc}	650	1ms	5ΜΩ
(0 - 750)V _{dc}	750	1ms	5ΜΩ
(0 - 1000)V _{dc}	1000	1ms	5ΜΩ

Fone: 51 3223-0608

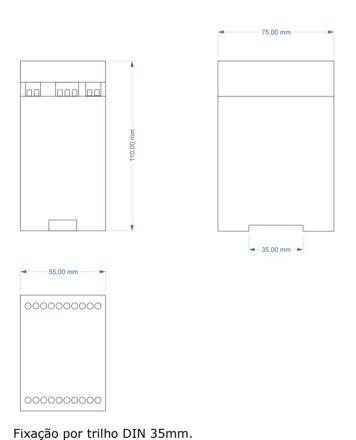

Página 2 de 6


Transdutores para Medidas de Tensão DC sem Mudança de Polaridade

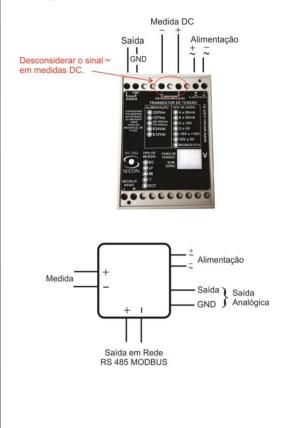
Código do modelo do produto:

Para o código final do produto, inserir as informações nas posições de 1 à 4 conforme diagrama abaixo.

Utilizando o diagrama anterior, pode-se determinar o código dos produtos a partir da etiqueta fixada sobre o transdutor:


- 1 Valor nominal (V) da tensão de entrada.
- 2 4 Tipo(s) de saída(s).
- 3 Alimentação auxiliar. Caso esteja indicado (80-350)Vdc/(70-245)Vac, utilizar o código UNIV.

Para o exemplo da etiqueta acima, teremos o modelo: 150V420ADC-UNIV-MOD



Transdutores para Medidas de Tensão DC sem Mudança de Polaridade

Dimensões Físicas:

Diagrama de Conexões:

Saída em rede RS485 (MODBUS-RTU).

Além da saída analógica, os transdutores também podem ser fornecidos com uma saída em rede RS485 protocolo MODBUS-RTU (atuando como escravo).

O endereço de comunicação MODBUS é determinado através de uma chave seletora (chaves de 1 à 7; Ver figura abaixo) e podem ser utilizados até 127 equipamentos em uma mesma rede.

Fone: 51 3223-0608

Página 4 de 6

Transdutores para Medidas de Tensão DC sem Mudança de Polaridade

Detalhes da Chave Seletora.

- Chaves de 1 à 7: Endereço de comunicação MODBUS; Chave 1 é o BIT menos significativo do endereço.
- Chave 8: Velocidade de comunicação serial RS485; Posição 0 = 9600bps; Posição 1 (ON) = 19200bps.

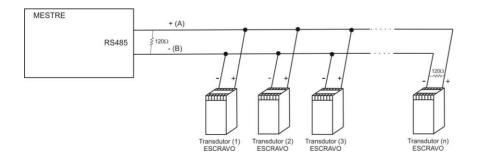
Funções Válidas

03 (Read Holding Registers)04 (Read Input Registers)

Paridade (Configurado em fábrica)

- Sem paridade (configuração padrão)
- Par
- Ímpar

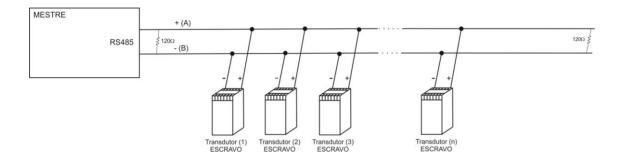
Stop BIT


1

Endereço da Memória de Leitura.

ENDEREÇO MEMÓRIA	TIPO	DESCRIÇÃO	INDICAÇÃO EM DECIMAL
0	INT16	VALOR DA TENSÃO DE ENTRADA	0 à 1000

Rede Física


Nas redes RS485, o meio físico mais utilizado é um par de condutores trançados por onde os dispositivos transmitem e recebem os dados. O comprimento máximo dessas redes não deve exceder os 1200m e caso a mesma tenha acima de 100m é importante a colocação de resistores de terminação de 120 Ω (conforme figura abaixo) para que não seja necessário a diminuição de velocidade de comunicação em benefício de uma manutenção de confiabilidade da rede.

Transdutores para Medidas de Tensão DC sem Mudança de Polaridade

Deve ser evitada a existência de condutores não utilizados em redes físicas pois os mesmos poderão autoressonar e acoplar ruídos. Caso a alternativa não seja possível, utilizar resistores de terminação em ambas as extremidades (ver figura).

Fone: 51 3223-0608

Página 6 de 6