

Transdutores para Medidas de Frequência.

Para outros modelos equivalentes, acessar: https://www.secon.com.br/produtos/transdutores.frequencia

Os transdutores da LINHA FRHZ se caracterizam por realizarem, com total isolamento galvânico (óptico), medidas de sinais em frequência AC (vários formatos de onda) e sinais pulsados DC. Montados em um encapsulamento padrão DIN para fixação em fundo de painel (trilhos – 35mm), são fornecidos com saídas analógicas do tipo padronizada.

Funcionamento: Os transdutores poderão medir frequências em sinais AC ou DC pulsados em vários formatos de onda. O início e o fim de um período (ciclo de onda) é determinado pela análise de passagens por zero do sinal em tensão de onde está sendo medida a frequência.

Características Técnicas:

- Transdutor analógico de frequência.
- Tipo de medida: Sinais AC (vários formatos de onda) e DC pulsado.
- Saída padronizada e proporcional a faixa de medida.
- Tensão de medida AC ou DC pulsado: (80 à 400)V_p
- Impedância de entrada: 300kΩ.
- Total isolamento galvânico (óptico) entre entrada / saída / alimentação. Ensaio de isolamento entre entradas de tensão e outros: 1,5kV_{ac}/1min (60Hz); e 2kV (1,2/50µs).
- $v_{máx}$ por um período ≤1min: $|v_p|$ + 50%.
- v_{máx} por um período ≤10s: 2 x |v_p|.
- Faixa de temperatura: -10°C à 70°C
- Grau de proteção: IP20; IP40 (sob-encomenda)
- Peso: 300 g

Nomenclatura:

 f_{faixa} : Faixa de frequência. f_n : Frequência medida.

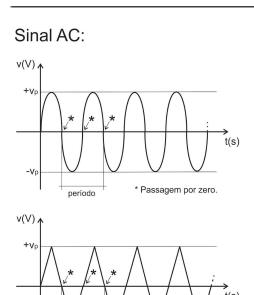
 v_n : Pico máximo de tensão visto no formato de onda.

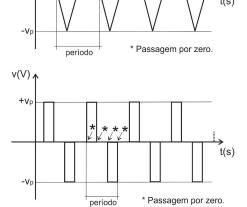
 $|v_p|$: Valor absoluto do pico máximo de tensão visto no formato de onda. Se $-v_p > +v_p$, considerar $-v_p$.

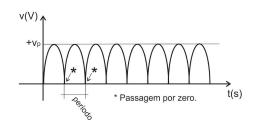
v_{máx}: Tensão máxima suportada na entrada da medida (sem causar danos ao transdutor)

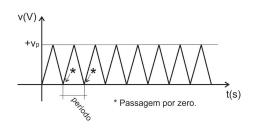
	Tipos de Saída					
Saída proporcional RMS	Função de Transferência	Código				
(0 - 5)V	Saída (V) = $5.f_p/f_{faixa}$	05V				
(0 - 10)V	Saída (V) = $10.f_p/f_{faixa}$	010V				
(0 - 1)mA	Saída (mA) = f_p/f_{faixa}	01A				
(0 - 20)mA	Saída (mA) = $20.f_p/f_{faixa}$	020A				
(4 - 20)mA	Saída (mA) = $4+16.f_p/f_{faixa}$	420A				
(5 - 0)V	Saída (V) = $5-5.f_p/f_{faixa}$	50V				
(10 - 0)V	Saída (V) = $10-10.f_p/f_{faixa}$	100V				
(1 – 0)mA	Saída (mA) = $1-f_p/f_{faixa}$	10A				
(20 – 0)mA	Saída (mA) = $20-20.f_p/f_{faixa}$	200A				
(20 – 4)mA	Saída (mA) = $20-16.f_p/f_{faixa}$	204A				
±5V	Saída (V) = -5 + $10.f_p/f_{faixa}$	±5V				
±10V	Saída (V) = -10 + $20.f_p/f_{faixa}$	±10V				
±20mA	Saída (mA) = $-20 + 40.f_p/f_{faixa}$	±20A				
PWM	Amplitude 5V (7kHz)	PWM				
Rede	RS485 - Protocolo MODBUS-RTU	MOD				
Outras	Sob consulta					

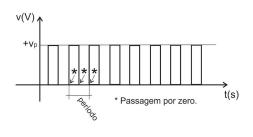
- Modelos com saída em tensão:
 - Corrente máxima suportada nas saídas: 2mA.
 - Tensão máxima na saída: < 13Vdc (p/ frequências superiores às do final da faixa)
- Modelos com saída em corrente:
 - Impedância máxima a ser colocada na saída: 500Ω.
 - Corrente máxima na saída: < 24mAdc (p/ frequências superiores às do final da faixa)




Fone: 51 3223-0608 Página 1 de 5


Transdutores para Medidas de Frequência. Para outros modelos equivalentes, acessar: https://www.secon.com.br/produtos/transdutores.frequencia

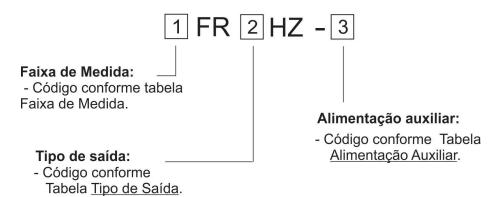


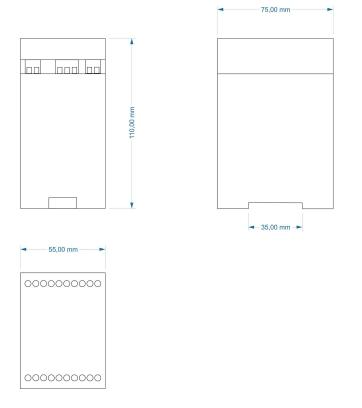


Sinal DC pulsado:

Alimentação Auxiliar					
Tipo de Alimentação Auxiliar	Característica	Corrente Máxima de Consumo	Código		
(10 - 15)Vdc	Total Isolamento galvânico	650mA	E12VDC		
(20 – 70)Vdc (23 – 60)Vac 45500Hz	Total Isolamento. Não é necessário cuidar a polaridade em alimentações DC.	150mA	UNIV3		
(80 - 350)Vdc (70 - 245)Vac 45500Hz	Total Isolamento. Não é necessário cuidar a polaridade em alimentações DC.	50mA	UNIV		
220Vac (±10%) 60Hz	Total Isolamento galvânico	25mA	220VAC		

Faixas de Medida				
Faixa de Medida	Código	Erro de Medida Máximo (70°C)	Tempo de Resposta f _n = Frequência Medic	
(1 - 50)Hz	1-50	±0,306Hz		
(1 - 100)Hz	1-100	±0,619Hz		
(1 - 250)Hz	1-250	±1,556Hz		
(10 - 100)Hz	10-100	±0,563Hz		
(10 - 250)Hz	10-250	±1,5Hz		
(20 - 100)Hz	20-100	±0,5Hz		
(20 - 250)Hz	20-250	±1,438Hz	≤2/f _p	
(40 - 125)Hz	40-125	±0,531Hz		
(45 – 55)Hz	45-55	±0,0625Hz		
(45 - 65)Hz	45-65	±0,125Hz		
(55 – 65)Hz	55-65	±0,0625Hz	\neg	
Outras (sob consulta)		-		




Para outros modelos equivalentes, acessar: https://www.secon.com.br/produtos/transdutores.frequencia

Código do modelo do produto:

Para o código final do produto, inserir as informações nas posições de 1 à 3 conforme diagrama abaixo.

Dimensões Físicas:

Diagrama de Conexões:

- Alimentação E12VDC: Cuidar polaridade.
- Demais alimentações: Não é necessário cuidar a polaridade.

Fixação por trilho DIN 35mm.

Fone: 51 3223-0608 Página **3** de **5**

Transdutores para Medidas de Frequência.

Para outros modelos equivalentes, acessar: https://www.secon.com.br/produtos/transdutores.frequencia

Saída em rede RS485 (MODBUS-RTU).

Além da saída analógica, os transdutores também podem ser fornecidos com uma saída em rede RS485 protocolo MODBUS-RTU (atuando como escravo). O endereço de comunicação MODBUS é determinado através de chaves seletoras (chaves de 1 à 7; Ver figura abaixo). A quantidade máxima de endereços distintos possíveis é de 127. Para mais detalhes, consulte nossa equipe técnica.

Norma TIA/EIA-485:

A norma TIA/EIA-485, conhecida popularmente como RS485, descreve uma interface de comunicação operando em linhas diferenciais capaz de se comunicar com 32 "unidades de carga". Normalmente, um dispositivo transmissor/receptor corresponde a uma "unidade de carga", o que faz com que seja possível comunicar com até 32 dispositivos. Entretanto, existem dispositivos que consomem frações de unidade de carga, o que aumenta o máximo número de dispositivos a serem interligados. O meio físico mais utilizado é um par trançado. Através deste único par de fios, cada dispositivo transmite e recebe dados. Cada dispositivo aciona o seu transmissor apenas no instante que necessita transmitir, mantendo-o desligado no resto do tempo de modo a permitir que outros dispositivos transmitam dados. Em um determinado instante de tempo, somente um dispositivo pode transmitir, o que caracteriza esta rede como half-duplex. Uma rede RS-485 pode também utilizar dois pares trançados, operando no modo full-duplex, totalmente compatível com o RS-422.

Os equipamentos Secon correspondem a 1 "unidade de carga" ($12k\Omega$) e estão configurados para trabalhar com redes half-duplex.

Detalhes da Chave Seletora.

- Chaves de 1 à 7: Endereço de comunicação MODBUS; Chave 1 é o BIT menos significativo do endereço.
- Chave 8: Velocidade de comunicação serial RS485; Posição 0 = 9600bps; Posição 1 (ON) = 19200bps.

Funções Válidas

03 (Read Holding Registers) 04 (Read Input Registers)

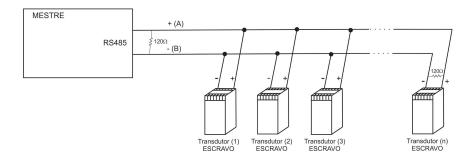
Paridade (Configurado em fábrica)

- 8N1 (configuração padrão): 8 bits de dados, Sem paridade, 1 bit de parada
- 8E1: 8 bits de dados, paridade par, 1 bit de parada
- 801: 8 bits de dados, paridade ímpar, 1 bit de parada

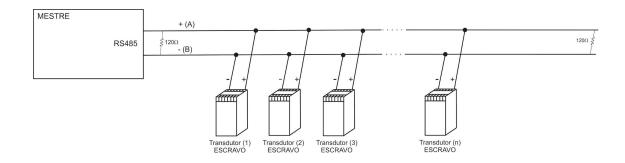
Stop BIT

Transdutores para Medidas de Frequência.

Para outros modelos equivalentes, acessar: https://www.secon.com.br/produtos/transdutores.frequencia


1

Endereço da Memória de Leitura.


ENDEREÇO MEMÓRIA	TIPO	DESCRIÇÃO	INDICAÇÃO EM DECIMAL
1	INT16	FREQUÊNCIA MEDIDA	0 à 1000

Rede Física

Nas redes RS485 (half-duplex), o meio físico mais utilizado é um par de condutores trançados por onde os dispositivos transmitem e recebem os dados. O comprimento máximo dessas redes não deve exceder os 1200m e caso a mesma tenha acima de 100m é importante a colocação de resistores de terminação de 120 Ω (conforme figura abaixo) para que não seja necessário a diminuição de velocidade de comunicação em benefício de uma manutenção de confiabilidade da rede.

Deve ser evitada a existência de condutores não utilizados em redes físicas pois os mesmos poderão auto-ressonar e acoplar ruídos. Caso a alternativa não seja possível, utilizar resistores de terminação em ambas as extremidades (ver figura).

Fone: 51 3223-0608

Página 5 de 5